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Querying your geometry

Given a polygonal model, how might you 
find…
● the normal at each vertex?
● the curvature at each vertex?
● the convex hull?
● the bounding box?
● the center of mass?



Querying your geometry

“Here’s some geometry.  What can we know?”
● A recurring theme here will be,

“The polygons are not the shape: the polygons 
approximate the surface of the shape.”

● Some questions from we could ask (e.g. ray-
polygon intersection) are about the actual 
polygons.

● But other questions, like the normal at a vertex, are 
really about approximating the underlying surface 
as closely as possible.



Normal at a vertex

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]



Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.



Finding the normal at a vertex

Method 1: Take the 
average of the normals 
of surrounding polygons

Problem: splitting one 
adjacent face into 10,000 
shards would skew the 
average



Finding the normal at a vertex

Method 2: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by the 
area of each face
● 2a: Weight each face 

normal by the area of the 
face divided by the total 
number of vertices in the 
face

Problem: Introducing new edges 
into a neighboring face (and 
thereby reducing its area) should 
not change the normal.
Should making a face larger 
affect the normal to the surface 
near its corners?
● Argument for yes: If the vertices 

interpolate the ‘true’ surface, 
then stretching the surface at a 
distance could still change the 
local normals.



Finding the normal at a vertex

Method 3: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by each 
polygon’s face angle at the 
vertex

Face angle: the angle α 
formed at the vertex v by 
the vectors to the next and 
previous vertices in the 
face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF



Gaussian curvature on smooth surfaces

Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia



Gaussian curvature on smooth surfaces

Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)



Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary 
smoothly: the normal to a face is constant on the 
face, and at edges and vertices the normal is—
strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view 

travels across an edge from one face to another) or not at all 
(as one's point of view travels within a face.) 

The Gaussian curvature of the surface of any 
polyhedral mesh is zero everywhere except at the 
vertices, where it is infinite.



Angle deficit – a better solution for 
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined 
to be two π minus the sum of the face angles of 
the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚



Angle deficit

High angle deficit Low angle deficit Negative angle deficit



Hmmm…

Angle deficit



Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed 
surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1



Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:



Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces



The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ



Convex hull

The convex hull of a set of points is the unique surface 
of least area which contains the set.
● If a set of infinite half-planes have a finite non-empty 

intersection, then the surface of their intersection is a convex 
polyhedron.

● If a polyhedron is convex then for any two faces A and B in 
the polyhedron, all points in B which are not in A lie to the 
same side of the plane containing A.

Every point on a convex hull has non-negative angle 
deficit.
The faces of a convex hull are always convex.



Finding the convex hull of a set of points

Method 1: For every 
triple of points in the set, 
define a plane P.  If all 
other points in the set lie 
to the same side of P 
(dot-product test) then 
add P to the hull; else 
discard.

Problem 1: this works but 
it’s O(n4).



Finding the convex hull of a set of points

Method 2:
● Initialize C with a tetrahedron from any four non-colinear points in 

the set.  Orient the faces of C by taking the dot product of the center 
of each face with the average of the vertices of C.

● For each vertex v, 
● For each face f of C, 

● If the dot product of the normal of f with the vector from the center of f to v 
is positive then v is ‘above’ f.  

● If v is above f then delete f and update a (sorted) list of all new border 
vertices.

● Create a new triangular face from v to each pair of border vertices.

Problem 2:
This is O(n2) at best.



Finding the convex hull of a set of points

Method 3:
The exterior boundary of the union of the 
cells of the Delaunay triangulation of a set 
of points is its convex hull.

Algorithm:
● Find the Voronoi diagram of your point set
● Compute the Delaunay triangulation (2D) or 

tetrahedralization (3D)
● Delete all faces of the simplices which aren’t on 

the exterior border

The exterior border of the 
Delaunay triangulation is 
the convex hull of the point 
set.



Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a 
point is inside any convex polyhedron.
● For each face, test the dot product of the normal of 

the face with a vector from the face to the point.  If 
the dot is ever positive, the point lies outside.

● The same logic applies if you’re storing normals at 
vertices.



Centroids

The centroid of a surface is the center 
of mass of the volume enclosed by the 
surface.
This is not the same as the center of the 
bounding box.
● We’ll assume that the ‘material’ within the 

surface is of uniform density. 
● We’ll also assume that we have a closed 

surface (without border.)



Centroids

Method 1: Take the 
average of all vertices.

C = (Σ{v}(v)) / ||{v}||

Problem 1: as with 
normals, an area of 
bizarre density would 
skew the average.

True centroid Average of vertices

Center of bounding box

~50 verts ~500 verts



Centroids

Method 2: Take the average 
of the centers of the faces of 
the surface, weighting each 
by the area of the face.
● This method works well for 

convex polyhedra.

Problem 2: This is vulnerable 
to dense ‘wrinkles’ of many 
polygons packed into a small 
volume.

The average adult human brain has a surface area of approximately 2,500 cm2, a volume of roughly 1200 cm3, and weighs about 1400g.  For 
comparison, a sphere of similar volume would have a surface area of  546 cm2.  Brain image courtesy of Moprhonix.com.



Centroids
Method 3a: Use “Monte Carlo” 
integration.  Find the bounding 
box of the surface and then choose 
billions of points at random inside 
the box; take the average of all 
those points which fall inside the 
surface.

Problem 3a: Testing for ‘inside’ is 
time-consuming (although it can 
be accelerated; try BSP trees.)  
Also, this lacks precision.  And, 
frankly, finesse.

Method 3b: Decompose the 
polyhedron into convex 
polyhedra, then use method 2 to 
find the center of each.  Average 
the centers, weighting each point 
by the volume of its convex 
polyhedron.

Problem 3b: Convex 
decomposition is solved, but it’s 
not trivial.
● Convex regions decompose 

rapidly to tetrahedra.
● Nonconvex regions can be tricky: 

tetrahedra may cross.
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